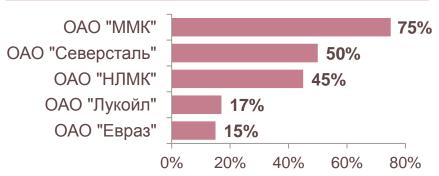
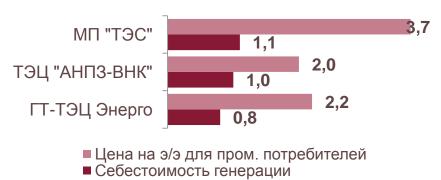


Распределенная генерация: схемы организации и существующие ограничения


Практический семинар «Распределённая генерация: технические аспекты»

Уход многих потребителей от исключительно централизованного энергоснабжения – общемировая тенденция

Доля РГ в энергосистемах мира, % (2011 г.)



Основные преимущества объектов РГ:

- Высокий КПД: возможность ко- и тригенерации***
- Возможность индивидуального маневрирования загрузкой мощностей, надежность
- Низкие затраты на транспортировку э/э
- Потенциал использования в качестве топлива побочных продуктов основного производства
- Снижение неопределенности, вызванной ростом тарифов и частыми изменениями законодательства

Себестоимость выработки э/э**, руб./кВт*ч

Выгоды, которые РГ приносит ее владельцам, очевидны Однако практическое решение такой задачи связано с рядом сложностей

Глобальная развилка: с или без ЕЭС

- Энергообеспечение полностью за счет РГ («островной режим»)
- Отсутствует подключение к ЕЭС
- Потребность в э/э (и т/э) в полном объеме покрывается за счет объекта РГ
- Минимальное резервирование также обеспечивается за счет собственных источников

2

Частичное покрытие собственных нужд за счет РГ

- Подключение к ЕЭС, используемое для покрытия пиковых нагрузок и/или продажи излишков электроэнергии в сеть
- Подключение к ЕЭС может использоваться в качестве резервного источника

Наличие собственного энергоисточника не всегда позволяет существовать в «островном режиме» в связи с ограниченностью маневренности собственных мощностей, а также техническими особенностями основного производства

Решение о строительстве энергоисточника – комплексное решение 3 блоков вопросов

Техническая схема

- Схема энергоснабжения (базовая нагрузка/ пики, резерв; сочетание источник/ ЕЭС)
- Целевая УМ
- Варианты состава оборудования
- Площадка размещения/ сетевая инфраструктура
- Показатели выработки

• ...

Организационно- юридическая схема

- Взаимодействие с рынком (ОРЭМ/ РРЭ)
- Резервирование э/э из ЕЭС/ условия оплаты
- Топливоснабжение (лимиты/ поставщики/ стоимость/ условия)
- Строительство и эксплуатация – привлечение внешнего оператора

• ...

Фин-экономические параметры

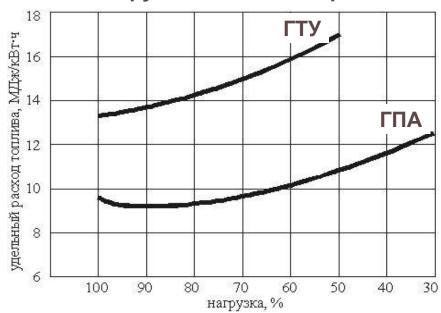
- Стоимость тех.
 присоединения/
 увеличения мощности
 (ЕЭС основной/
 резервный/ доп.
 источник)
- Стоимость покупки/ продажи э/э в ЕЭС
- CAPEX/ OPEX по вариантам технических решений

. . .

Сбалансированная оценка всех параметров проекта – выражение результатов в единых/ сравнимых показателях (NPV, IRR, PP)

Параметры энергоисточника определяются оптимальностью режимов его загрузки

Снижение эффективности


работы энергоисточника при резко переменном графике нагрузки

Наличие **технологического минимума** загрузки мощностей (зависит от выбора технологии)

Необходимость **покупки/ продажи** разницы между выработкой и пиками/ провалами в потреблении в ЕЭС

Необходимость обеспечения **значительного резерва** мощности

Зависимость уд. расхода топлива от нагрузки газовой генерации

Ограничения по графику нагрузки

- Нежелательно грузить станцию <50%
- Нежелательны резкие скачки потребления мощности

Не любой график потребления можно эффективно отработать полностью на собственном энергоистчнике

ПбПбП

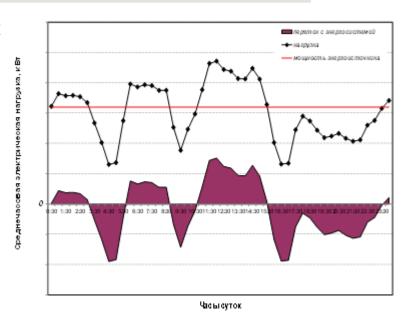
Необходима координация с ЕЭС

Координация с ЕЭС – выход на нормативные ограничения (1/2)

Необходимость выхода на **ОРЭМ** при установленной мощности энергоисточника > 25 **МВ**т

- Возникает при необходимости продажи э/э стороннему потребителю
- Возможны исключения при одновременном выполнении условий (ПП №1172):
 - ->75% использовать на собственные нужды и продавать не более 25 МВт
 - в качестве основного вида топлива использовать побочные продукты основного производства или менее 40% потребления может быть обеспечено за счет иного объекта генерации, не принадлежащего данному субъекту

Риски


- Формулировки в ПП №1172 допускают неоднозначность трактовки риски принятия решения НП «Совет рынка» об отнесении объекта к исключению
- Разрешение по невыходу на ОРЭМ можно получить только после ввода станции – риски при планировании
- Разрешение необходимо получать ежегодно
- При выделении объекта в отдельное юр. лицо (SPV/ ДЗО/ компания-оператор) возникают ограничения, связанные с необходимостью выполнения формального требования о владении такой станцией непосредственно потребителем*

Координация с ЕЭС – выход на нормативные ограничения (2/2)

Необходимость технологического присоединения к сетям и заключения договора на услуги оперативно-диспетчерского управления (ОДУ)

- В тех. условиях могут содержаться требования к характеристикам объекта РГ, обязательные к выполнению (ПП от 27.12.2004 №861)
- ОДУ:
 - Оплата ОДУ на полный объем энергопотребления производства, в случае продажи э/э на ОРЭМ или РРЭ и УМ > 25 МВт (ПП от 14.02.2009 №114), или
 - Заключение безвозмездного соглашения с СО (в случае влияния работы энергоисточника на режимы работы ЕЭС)

В целом указанные требования соответствуют общемировым нормам Однако в России не существует единого стандарта на присоединение объектов РГ к ЕЭС. Это может вызвать определенные трудности

Риски взаимодействия с сетевыми компаниями

Необходимость **выполнения технических условий** – проведение дополнительных работ:

- Устройства релейной защиты и автоматики
- Противоаварийное управление
- Усиление участков сети, непосредственно не присоединенных к устройствам сетевых компаний, пр.

Споры о необходимости того или иного мероприятия, требуемого в рамках тех. условий, **могут идти годами**

Изменение действующего законодательства: оплата сетевых услуг (в т.ч. в части резервирования) на полный объем присоединенной мощности потребителя (вне зависимости от факта потребления)

- Существенное увеличение капиталовложений
- Затягивание сроков реализации проекта
- Снижение/ полное нивелирование экономической целесообразности проекта

Объект РГ – опасный производственный объект: дополнительные капитальные затраты

Обеспечение требуемых норм экологической безопасности

- Установка устройств очистки газов
- Увеличение площадки санитарнозащитной зоны

Выполнение требований о безопасности машин и оборудования

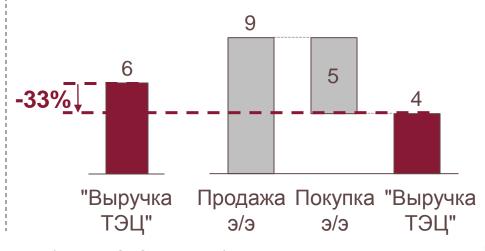
- Сертификация основного оборудования
- Оформление декларации промышленной безопасности
- Внесение в федеральный реестр опасных производственных объектов
- Усложнение общих требований к безопасности производства в целом

Выполнение требований по энергоэффективности для газового оборудования

branan.

- Выполнение требований энергоэффективности (ГОСТ, ТУ), сертификация системы ГОСТ Р
- Разрешение на применение, выданное Ростехнадзором

Примеры блок-станций Кейс №1 – ТЭЦ одного из промышленных предприятий ОЭС Сибири

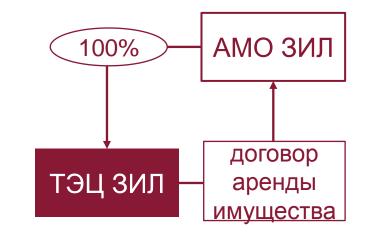

- ТЭЦ обеспечивает э/э
 промышленное предприятие (~70%
 полезного отпуска станции), а также
 близлежащий город
- До 2011 г. ТЭЦ реализовывала электроэнергию на ОРЭМ в объеме сальдо-перетока
- Из-за изменения схемы работы на ОРЭМ* в 2011 г. для ТЭЦ цена продажи мощности снизилась более, чем на 60%, цена на покупку мощности в 2,14 раза превышает цену продажи мощности

Новая схема работы на ОРЭМ привела к получению убытков

Установленная электрическая мощность, МВт	410
Установленная тепловая мощность, Гкал/ч	н/д
Субъект какого рынка электроэнергии	ОРЭМ

Работа на ОРЭМ до 2011 г. по сальдоперетоку, у.е.

Работа на ОРЭМ после 2011 г., у.е.



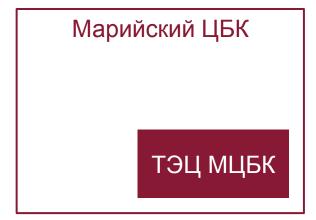
^{* -} требования продажи всей полезной выработки на ОРЭМ. Потребность предприятия в энергии (собственника ТЭЦ) покрывается за счет последующей покупки энергии с оптового рынка. Кроме того, оплата мощности ведется не на полную установленную мощность, а только на рабочую

Примеры блок-станций Кейс №2 – ОАО «ТЭЦ ЗИЛ»

- ОАО «ТЭЦ ЗИЛ» (ТЭЦ ЗИЛ)
 является 100%-м дочерним
 обществом ОАО «АМО ЗИЛ»
- ТЭЦ расположена в производственной зоне на территории ОАО «АМО ЗИЛ», обеспечивает его э/э и т/э
- ТЭЦ является субъектом РРЭМ, имея разрешение о невыходе на ОРЭМ в соответствии со ст.33*
 Правил ОРЭМ
- В целях обеспечения соответствия нормативным требованиям все имущество ТЭЦ передано в аренду АМО ЗИЛ

Установленная электрическая мощность, МВт	125
Установленная тепловая мощность, Гкал/ч	625
Субъект какого рынка электроэнергии	РРЭМ

Более 75% электроэнергии потребляется на собственные нужды


 Менее 40% потребления электроэнергии может быть обеспечено за счет производства электроэнергии на ином объекте генерации, не принадлежащем такому субъекту

Примеры блок-станций Кейс №3 – ТЭЦ ОАО «Марийский целлюлозно-бумажный комбинат»

- ТЭЦ МЦБК входит в состав МЦБК и является его цехом
- ТЭЦ субъект РРЭМ, разрешение о невыходе на ОРЭМ в соответствии со ст.33* Правил ОРЭМ
- ТЭЦ преимущественно работает на собственные нужды МЦБК, а также обеспечивает э/э и т/э жилищнокоммунальный сектор г. Волжска

Установленная электрическая мощность, МВт	48
Установленная тепловая мощность, Гкал/ч	н/д
Субъект какого рынка электроэнергии	PPЭM

Более 75% электроэнергии потребляется на собственные нужды

Менее 40% потребления электроэнергии может быть обеспечено за счет производства электроэнергии на ином объекте генерации, не принадлежащем такому субъекту

Примеры блок-станций Кейс №4 – ТЭЦ ОАО «Чепецкий механический завод»

- ТЭЦ ЧМЗ входит в состав ЧМЗ и является его цехом
- ТЭЦ субъект РРЭМ, разрешение о невыходе на ОРЭМ в соответствии со ст.33 Правил ОРЭМ
- ТЭЦ по э/э преимущественно работает на собственные нужды ЧМЗ
- ТЭЦ один из основных источников централизованного теплоснабжения в г. Глазов

Установленная электрическая мощность, МВт	89
Установленная тепловая мощность, Гкал/ч	797
Субъект какого рынка электроэнергии	РРЭМ

ТЭЦ, получившие разрешение не выходить на ОРЭМ:

- Преимущественно старые вводы (до 2011 г.)
- Основание (в большинстве случаев) ст.33 Правил ОРЭМ

Накопители энергии – будущее распределенной генерации?

- Использование накопителей позволит не синхронизировать объект РГ с ЕЭС даже при резкопеременном графике нагрузки в
- Стоимость накопителя должна составлять при текущих условиях
 5-7 тыс. руб./кВт*ч
- Существующая цена значительно выше, например Li-ion ~ 30 тыс. руб./кВт*ч
- По Li-ion тренд на снижение удельной стоимости: в перспективе 5 лет – 50%

Накопители могут быть интересны для РГ в будущем (2020-2030 гг.)

Пример сглаживания суточного графика потребления накопителем, МВт

Предположения оценки*

- Синхронизация с ЕЭС не выгодна для потребителя,
 т.к .покупается э/э для покрытия пиков по цене,
 превышающей цену продажи излишков в ЕЭС
- Тариф покупки э/э у ГП − 1,88 руб./кВт*ч
- Тариф продажи э/э ГП (не может превышать цену на ОРЭМ) – 0,89 руб./кВт*ч

Выводы

- Развитие РГ это не просто общемировой тренд, но и реакция потребителей на **ценовые диспропорции на рынке и** неопределенность в части регулирования
- Проблемы возникают тогда, когда объекту РГ необходимо взаимодействовать с ЕЭС: де-факто отсутствует необходимая техническая и нормативная база для эффективной интеграции
- Потребитель вынужден искать **организационно-юридические схемы**, позволяющие реализовывать такие проекты в рамках существующего регулирования
- Существующие нормативные ограничения влияют на совокупную экономику проекта, но вряд ли способны сдержать развитие тренда
- Необходима проработка **механизмов поддержки и интеграции РГ в ЕЭС**

Контактная информация

Мы будем рады ответить на любые Ваши вопросы, а также встретиться с Вами, чтобы обсудить более подробно задачи, стоящие перед руководством Вашей компании и возможные пути их решения

Компания Branan

Адрес 127287, Москва, ул. 2-я Хуторская, д. 38A, стр. 9

Internet <u>www.branan.ru</u>

Телефон 8 (495) 961-12-06

Факс 8 (495) 961-12-07

Контактное лицо:

Быкова Ольга, Руководитель практики «Стратегия»

E-mail ovb@branan.ru

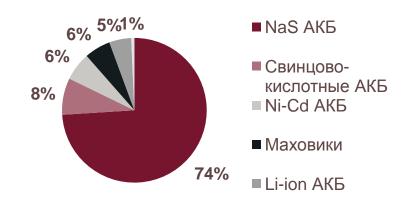
Телефон 8 (916) 516-98-83

Приложение. Реестр субъектов электроэнергетики, на которых не распространяется требование о реализации э/э и мощности на ОРЭМ

на период с 01.01.2013 по 30.06.2013

Полное наименование юридического лица	Наименование станции, в отношении которой выдается подтверждение	Уст. станции, МВт	Соответствие пункту Правил ОРЭМ	Год ввода
Волго-Балтийские государственное бассейновое управление водных путей и судоходства. Филиал "Шекснинский район гидросооружений и судоходства"	Шекснинская ГЭС	84	32	1965
ОАО "Монди Сыктывкарский ЛПК"	ТЭЦ ОАО "Монди Сыктывкарский ЛПК"	553	32	
ОАО "Миасский машиностроительный завод"	Тургоякская ТЭЦ	50	33	
ООО "Росмикс"	ГТЭС "Терешково"	180	33	2011
ОАО "Научно-производственная корпорация "Уралвагонзавод"	ТЭЦ УВЗ	129	33	1932
ОАО "Марийский целлюлозно-бумажный комбинат"	ТЭЦ ОАО "МЦБК"	48	33	1938
ООО "Юргинский машиностоительный завод"	ТЭЦ ООО "Юргинский машиностоительный завод"	91	33	
ОАО "Новолипецкий металлургический комбинат"	ТЭЦ, УТЭЦ	185, 150	32	
ОАО "ФосАгро-Череповец"	УТЭЦ, ГТЭС	108, 32	33	
ОАО "Чепецкий механический завод"	ТЭЦ ОАО ЧМЗ	89,4	33	1952
ООО Нефтяная компания "Сибнефть-Югра"	Южно-Приобская блок-станция	96	32	
ОАО "ГНЦ НИИАР"	Исследовательские ядерные установки ВК-50, БОР-60	50	33	
ОАО "Евраз"	Западно-Сибирская ТЭЦ	600	32	1963
ООО "Газпром Добыча Ямбург"	Газотурбинная электростанция	72	33	
МУП "Рубцовский тепловой комплекс"	Рубцовская ТЭЦ	43	32	1943
АМО "ЗИЛ"	ТЭЦ-ЗИЛ	125	33	2006
ОАО "Группа ИЛИМ" филиал в г. Коряжме	Филиал ОАО "Группа "Илим" в г. Коряжме	353	33	
ОАО "Байкальский целлюлозно-бумажный комбинат"	ТЭЦ ОАО "Байкальский ЦБК"	49	32	
ООО "Ситиэнерго"	ТЭС ММДЦ "Москва-Сити"	236	33	2009
МП "Советсктеплосети"	ТЭЦ-10	36	33	
ОАО "Архангельский целлюлозно-бумажный комбинат"	Тепловая электростанция № 1	163	33	
ЗАО "БазэлЦемент-Пикалево"	ТЭЦ ЗАО "БазэлЦемент-Пикалево"	78	33	

Станции мощностью свыше 25 МВт, которые получили подтверждение о нераспространении требования работать на ОРЭМ, как правило, были введены до введения соответствующих поправок в ФЗ об э/э


Характеристика рынка накопителей в электроэнергетике

- В 2011 г. установленная мощность накопителей в электроэнергетике (исключая крупные ГАЭС и САЕS**) в мире составила более 425 МВт
- Наибольшее распространении получили NaS (серно-натриевые) аккумуляторные батареи (исключая крупные ГАЭС и CAES**)
- Ожидаемый темп роста мирового рынка накопителей (CAGR) до 2030 года составляет более 30%***

Развитие накопителей в мире (2015 г.)

- NaS-накопители: в Абу-Даби (300 МВт), во Франции (150 МВт), США (20 МВт)
- Проточные технологии: в США 15 МВт и 2 МВт накопителей технологии Zn-Air, Zn-Br соответственно
- Технология Flywheels (маховики): в США 20 МВт (Beacon Power)

Структура установленной мощности накопителей в энергетике в мире*, МВт

Накопители в РФ (исключая ГАЭС)

- По заказу ФСК ЕЭС, компания Ener1 в 2011 г. ввела 2 установки по 1МВт/3МВт*ч (Сочи, Санкт-Петербург) для резервного питания особо важных потребителей
- Также Ener1 и ФСК ЕЭС планировали еще 45 установок суммарной мощностью 27,8 МВт (27,8 МВт*ч) для резервного обеспечения собственных нужд подстанций

* - накопители, работающие на сжатии воздуха

*** - по данным Pike Research